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LETTER TO THE EDITOR 

Effective interfacial Hamiltonian theories of correlation 
functions at wetting transitions 

A 0 Parry 
Department of Mathematin, Imperial College, London SW7 282, UK 

Received 6 April 1993 

Abstract. The recent Fisher-Jin crossing criterion derivation of the effective interfacial 
Hamiltonian for wetting transiiions is generalized to consider surfwes of tixed magnetiza- 
tion that may remain bound to the wall in the limit of infinite adsorption. It is shown that 
an infinite set of such effective Hamiltonians is required to construct the mean-field order- 
parameter correlation function G(r,, r?). Surfaces that remain bouna to the wall in the 
limit of complete wetting are shown to exhibit fluctuations which have a coherent quality. 
We emphasize that the construction of C from an infinite set of effective Hamiltonians is 
required for full thermodynamic consistency. 

In this letter we consider the relationship between effective interfacial Hamiltonian 
models and the connected spin-spin correlation function G(rl, r?) at wetting tran- 
sitions [I]. In a series of important recent communications Fisher and Jin (FJ) [2-5] 
have systematically derived an effective interfacial Hamiltonian Hl[e(y)J, with e (y )  
the collective co-ordinate representing the position of the surface of fixed magnetiza- 
tion mi, from a Landau-Ginzburg-Wilson (LGW) Hamiltonian HLGw[m(r)J which is a 
functional of the microscopic local spin density m(r).  The systematically derived 
interfacial Hamiltonian properly accounts for the influence of the wall-a phase 
interface on the depinning ab interface. This has extremely important consequences 
for the 'critical' wetting transition in ~ d 3 3  which generically becomes fluctuation- 
induced first-order provided d <  m .  Recent work by the author [6] has also empha- 
sised that a proper treatment of the influence of the wall-a and ab interfaces on order- 
parameter fluctuations is again cruciBl in order that the theory correctly indentifies all 
the singular behaviour manifest in G at critical and complete wetting [6]. In the 
present leter we shall calculate the exact mean-field correlation function (correspond- 
ing to d= a) from the effective Hamiltonian theory. We shall show that it is essential 
to consider the fluctuations of all generalized surfaces of fixed magnetization m', 
,described by the corresponding infinite set of effective Hamiltonians {Hl [e (y ) ;  m']} 
with 

Here 2 ( t ( y ) ;  m-3 and W ( e ( y ) ;  m') are the (position dependent) stiffness and binding 
potential functions for the surface of fixed magnetization m'. It transpires that it is 
'insufficient to use one effective Hamiltonian with collective co-ordinate e(y) to exactly 
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construct G. Moreover such a single Hamiltonian does not even reproduce the required 
singular behaviour manifest in the transverse moments of G at critical and complete 
wetting [6]-one also needs to consider generalized surfaces that remain bound to the 
wall in the limit of infinite adsorption. Our analysis explicitly highlights the subtle 
modification of capillary-wave-like fluctuations that occur near the wall. For example, 
at the complete wetting transition we show that surfaces that remain bound to the wall 
in the limit of infinite adsorption have stiffness coefficients containing non-vanishing 
contributions from both wall-a and ab interfaces. The fluctuations of such surfaces 
thus have a demonstrably coherent quality which clarifies earlier speculations [7]. 

To begin we recall the important features of the FJ derivation of Hl[e (y ) ;  m’]. FJ 
start from the standard LOW Hamiltonian pertinent to describing semi-infinite systems 
(z>O) with short ranged forces 

where @(m) and @l(m) are bulk and surface free-energy densities respectively. @(m) 
has (for sub-critical temperatures T< TJ a standard double well form showing bulk 
two phase coexistence between phases a (with m,>O) and p (with ma<O) in zero bulk 
field h=O. We shall assume that @, takes the standard expression @](m)= 
-(hlml +gm?/2) with hl the surface field. The mean-field phase diagram of (2) is well 
understood [SI and exhibits first-order, tricritical, critical and complete wetting 
transitions. Later we shall concentrate on the case where the wall+ phase interface is 
completely wet by the a phase above a critical wetting temperature T,. 

FJ define e ( y )  as being the surface of fixed magnetization 

m(r= , y ) )  = m’ (3) 

Hde(y) ;  m’l =&wIm& W ) I  (4) 

and define H,[e(y) ;  m’] via 

where mz(r; e ( y ) )  is the profile that minimizes (2) subject to the crossing condition 
(3). The identification (4) corresponds to a saddle-point approximation to the partial 
trace used to formally define HI [2].  By first considering planar profiles m&; e=) FJ 

derive the binding potential 

+ e  independent terms (5 )  
which accounts for the translations of the planar profile with the specified crossing 
constraint (3). For convenience we have dropped the implicit field dependence in ( 5 )  
but have included the mx dependence explicitly to emphasize that (5) defines a family 
of binding potentials. The e independent terms in (5 )  are usually defined such that 
W( m ; mX) = 0 in the absence of a bulk field h. These terms are related to the surface 
free-energy per unit area 2. Recall that in the limit of large adsorption we write [l] 

xwa = xwa + E,, + EdS. (6) 
The first two terms correspond to the (zero-field) wall-a and ab interfacial tensions 
respectively. Ps is the singular contribution to the excess free-energy. For critical 
wetting (h= 0-, T+ T;) we write Zsin6-(Tw- T)’-’+ whilst for complete wetting 
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(h+O-; Tc> T> Tu) ZSios- Ihl*-q. At mean-field level where fluctuations are neglig- 
ible recall that Z""*-(T,- T)2 for critical wetting whilst ZSi"*-h Inlhl for complete 
wetting [SI. 

To calculate qeb); m") FI consider small fluctuations se(y )=  e ( y )  -e ,  from the 
planar case. The crossing criterion (3) specifies that the corresponding magnetization 
fluctuation dm(r) Em&; qy)) -m=(z; e) satisfies 

From (2), (3) and (7) FI ,derive the expression 

(8) 
am, 
ae h ( r )  =- (2; e,)de(y) +o(6e(y)2). 

Rather than follow FJ we choose to specify Sm(r) in terms of derivatives with respect 
to z only. It is possible to show [9] that an equivalent expression for 6m(r) is 

where a is determined by a boundary condition that follows from analysis of (4). From 
(9) we derive an alternative expression for E((; m') 

Whilst being somewhat less elegant than the FJ expression it will prove easier to 
interpret. To see this consider the function 

To (2) 4 ( 2 ;  mo(r)) (11) 
where mo(z) is the planar equilibrium mean-fieid profile. The behaviour of the 
function defined in (11) depends on the value of q ( z )  which in turn is related to the 
qualitative behaviour of the corresponding generalized surface. We distinguish 
between two cases: 

(i) If m,>ma(z)>mg, then. in the limit of infinite adsorption r (with r 
- .f; dz((m(r)) - m#)) we find the simple result 

zn (z)+.z!f r+ m (12) 
where 2;; is the mean-field result for the ab stiffness. Note that in the limit T-t m the 
position z where mn(z) =mx diverges; z corresponds to a measure of the thickness of 
the wetting layer. 
(ii) If 3mn(z)>m,'then in the limit of infinite adsorption 

20 (2) > % r+m. (13) 
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Thii inequality reflects a non-vanishing contribution from the wall-a phase. The 
distance z remains finite in this limit. The precise value of zo(z) is dependent on z. In 
the limit of r+O it is straightforward to see that 

2, (0) = 27- h(mo(O)) (14) 
valid for any r. Here 2s is the mean-field expression for the total surface free-energy 
of the walla interface. As the value mi= m,(z) is decreased to ma, z increases and the 
difference T , ( z ) - ~ % ~  vanishes providing the limit r + m  is taken first. From (14) it 
follows that even surfaces that remain bound to the wall in the approach to complete 
wetting reflect singularities defined in thermodynamic functions (recall (6)). 

The above considerations have important implications for theories of correlation 
functions. Here we shall restrict our attention to the mean-field regime where the set 
{HI[e(y);mx]} may be well approximated by the set of local Gaussion (LG) 
Hamiltonians {H:'[e(y); q ( z ) ] }  with 

which models the fluctuations of surfaces of fixed magnetization mx( =mo(e,)) about 
their respective equilibrium positions to. In deriving (15) we have simply expanded 
about the equilibrium position and used the result 

d 
de wye,; mo(Po))s- w(e; m") I = 0. 

e=eo 
m = = M t o )  

Each Hamiltonian of the set {H,[e(y);  m']} may be used to calculate the corresponding 
expectation values (.)H. Moreover by virtue of (7), (8) and (9), each Hamiltonian 
provides a prescription for calculating a correlation function Gy(r , ,  r,; m"). Here we 
shall concentrate on calculating the transverse Fourier transform 

G(z,: z,; e) =J dy,,G(r,, r2) eiQ.ylz 

= G~(zIzJ + Q'G~(Z,, 2 2 )  + . . . 
where the small wavevector expansion defines the zeroth and second moments. The 
set of Hamiltonians {HI[e(y), mq} therefore define a corresponding set of correlation 
functions {GkG(z,; 2,; Q; m')} where 

Note that each allowed value of mi satisifies mr = mo(eo) and m&; e,) = mo(z). The set 
{Gp(z , ,  zrQ; m")) may be viewed as a set of local approximations to the full GI. It is 
straightforward to show [9] that no single choice of m' will reproduce all the required 
thermodynamic related singularities in G. For example, the local approximation for G 
based on the crossing criterion used by FJ 12-51 would correspond to GkG(z,, z2; Q; 0). 
Whilst this is an excellent description for zl-z2-e0 it does not correctly identify the 
singular contribution to Gz(O+, -O+) [9] for critical and complete wetting (see 
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equation (19) below). This difficulty may be overcome if we define the mean-field 
effective Hamiltonian expression for GI(&, z2i Q) for different values of zI, z2 using 
the associated local expression from the set {GFG(zt, z2; Q; m")}. For the case z1 =zz 
there is no ambiguity over the choice of H,[e (y ) ;  m']. We define 

GY%, z; Q )  =G% z;  Q; mo(4) ' , (17) 
which from (7) gives 

kSTm;(z)' 
W"(z; mu(z)) + Zo (z)Q2' 

GyF(z, z ;  Q)= 

Setting z = Of and eliminating W"(0; q ( 0 ) )  yields 

G E ( O + ,  O+). - ~F-$J1,(" 

G%)(O+,  0+)2- M9' 
where we have used (14). Equation (19) is infact the exact Landau theory result for 
same quantity defined on the left-hand side [lo]. Importantly equation (19) correctly 
relates the singular behaviour in G(0,O; Q) to 2:; which was emphasised in equation 
(6). To proceed, we note that a necessary condition for (19) to be satisfied is GK(0, z) 
a mKz) [6,9]. From (18) it then follows that 

for zz>zl. Equation (20) is an explicit expression for Go Vz,, zz. Using standard 
formuli we can use (20) to calculate Gz(zl, zz). By seeking thermodynamic consistency 
with the expression for G2(z, z) implied in318j we arrive at the identification 

W ( z ;  mo(z)) = [a + b d ~ ' m ~ ( z ' ) - ~ ]  (21) 

where a and b are determined by suitable boundary conditions. Equation (21) may 
also be derived by direct differentiation of (5) [9]. However, the identification (21) 
together with the formula (20) constitute the exuct Zernike-Landau theory expression 
for Go@,, z2) [lo, 111 found by solving the Ornstein-Zenike equation. It follows that 
our method for constructing G(z,, 2,; Q) is exact (at mean-field level) in the limit of 
small Q. In contrast to the rather cumbersome Landau theory expressions for Go(zl, 
z2) and G2(r,, z?) our present study yields a compact expression for G(z, z; Q) in 
terms of functions defined in the set of effective Hamiltonians. This makes the 
interpretation of the results considerably easier. Here we point out some implications 
for complete wetting. Near a complete wetting transition the equilibrium mean-field 
profile mo(z) is monotonic with mo(0) >ma. Consequently there exist surfaces of type 
(ii) considered above. Surfaces of fixed magnetization m,>mx>mg (type (i)) are 
located near the ab interface. These have fluctuations controlled by a surface stiffness 
coefficient %(to)=XM+O(e-edEh) [4,5] where Cb is the (a phase) bulk correlation 
length. Clearly these surfaces unbind from the wall in the limit of complete wetting 
@+Ow; T, > T> T . ) .  Their fluctuations have a standard capillary-wave-like interpre- 
tation. If we look at surfaces of type (ii) which model the behaviour of G(z, z; Q) 
when mo(z)>m. we find (recall~(l3) and (14)) that the fluctuations have a coherent 
quality. i.e. the stiffness coefficients have contributions from both wall-a and ab 
interfaces. This clarities the picture of coherent fluctuations that had been speculated 



L672 Letter to the Editor 

earlier [7]. Finally we note that in the approach to critical wetting (h =O-; T-t G) we 
have m,>m,(r) so that all surfaces of fixed magnetization unbind from the wall- 
there is no coherent manifestation of the capillary-wave-like modes. 
In summary we have shown that it is possible to construct the exact mean-field 

order-parameter correlation function from a set of interfacial Hamiltonians. The 
analysis highlights the subtle modification of capillary-wave-like modes that occur 
near the wall and shows that even surfaces that remain bound to the wall in the limit of 
complete wetting have fluctuations which are related to thermodynamic singularities. 
Further work is required to understand the nature of G away from the mean-field 
regime when fluctuations are no longer negligible. 
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